A logistic radial basis function regression method for discrimination of cover crops in olive orchards
نویسندگان
چکیده
Olive (Olea europaea L.) is the main perennial Spanish crop. Soil management in olive orchards is mainly based on intensive and tillage operations, which have a great relevancy in terms of negative environmental impacts. Due to this reason, the European Union (EU) only subsidizes cropping systems which require the implementation of conservation agro-environmental techniques such as cover crops between the rows. Remotely sensed data could offer the possibility of a precise follow-up of presence of cover crops to control these agrarian policy actions, but firstly, it is crucial to explore the potential for classifying variations in spectral signatures of olive trees, bare soil and cover crops using field spectroscopy. In this paper, we used hyperspectral signatures of bare soil, olive trees, and sown and dead cover crops taken in spring and summer in two locations to evaluate the potential of two methods (MultiLogistic regression with Initial and Radial Basis Function covariates, MLIRBF; and SimpleLogistic regression with Initial and Radial Basis Function covariates, SLIRBF) for classifying them in the 400–900 nm spectrum. These methods are based on a MultiLogistic regression model formed by a combination of linear and radial basis function neural network models. The estimation of the coefficients of the model is carried out basically in two phases. First, the number of radial basis functions and the radii and centres’ vector are determined by means of an evolutionary neural network algorithm. A maximum likelihood optimization method determines the rest of the coefficients of a MultiLogistic regression with a set of covariates that include the initial variables and the radial basis functions previously estimated. Finally, we apply forward stepwise techniques of structural simplification. We compare the performance of these methods with robust classification methods: Logistic Regression without covariate selection, MLogistic; Logistic Regression with covariate selection, SLogistic; Logistic Model Trees algorithm (LMT); the C4.5 induction tree; Naïve Bayesian tree algorithm (NBTree); and boosted C4.5 trees using AdaBoost.M1 with 10 and 100 boosting iterations. MLIRBF and SLIRBF models were the best discriminant functions in classifying sown or dead cover crops from olive trees and bare soil in both locations and seasons by using a seven-dimensional vector with green (575 nm), red (600, 625, 650 and 675 nm), and near-infrared (700 and 725 nm) wavelengths as input variables. These models showed a correct classification rate between 95.56% and 100% in both locations and seasons. These results suggest that mapping covers crops in olive trees could be feasible by the analysis of high resolution airborne imagery acquired in spring or summer for monitoring the presence or absence of cover crops by the EU or local administrations in order to make the decision on conceding or not the subsidy. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Hybrid Multilogistic Regression by Means of Evolutionary Radial Basis Functions: Application to Precision Agriculture
In this paper, a previously defined hybrid multilogistic regression model is extended and applied to a precision agriculture problem. This model is based on a prediction function which is a combination of the initial covariates of the problem and the hidden neurons of an Artificial Neural Network (ANN). Several statistical and soft computing techniques have been applied for determining these mo...
متن کاملA multi-objective neural network based method for cover crop identification from remote sensed data
One of the objectives of conservation agriculture to reduce soil erosion in olive orchards is to protect the soil with cover crops between rows. Andalusian and European administrations have developed regulations to subsidise the establishment of cover crops between rows in olive orchards. Current methods to follow-up the cover crops systems by administrations consist of sampling and on ground v...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملDiscriminating irrigated and rainfed olive orchards with thermal ASTER imagery and DART 3D simulation
This work provides a description of the research conducted to assess methods for the discrimination between irrigated and rainfed open-tree canopies using advanced spaceborne thermal emission and reflection radiometer (ASTER) satellite imagery and discrete anisotropic radiative transfer (DART) radiative transfer 3D simulation model. Summer and winter ASTER images were acquired over a study area...
متن کاملThe efficiency of Artificial Neural Network, Neuro-Fuzzy and Multivariate Regression models for runoff and erosion simulation using rainfall simulator
1- INTRODUCTION According to the complexity of environmental factors related to erosion and runoff, correct simulation of these variables find importance under rain intensity domain of watershed areas. Although modeling of erosion and runoff by Artificial Neural Network and Neuro-Fuzzy based on rainfall-runoff and discharge-sediment models were widely applied by researchers, scrutinizing Arti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 37 شماره
صفحات -
تاریخ انتشار 2010